MGI Projects

Materials Genome Initiative (MGI) related research at the University of Wisconsin-Madison focuses on major advances in health care, energy, computation, and other fields. These research projects seek to fulfill the MGI goal of accelerating the pace of discovery and deployment of advanced material systems—twice as fast, at a fraction of the cost—in pursuit of global competitiveness and human welfare.

Current projects in the spirit of the MGI at the Madison campus include:

Perepezko90x90template2A Combined Experiment and Simulation Approach to the Design of New Bulk Metallic Glasses

PIs: John H. PerepezkoPaul M. VoylesDane MorganIzabela Szlufarska, (UW-Madison)
Graduate Students and Postdoctoral Fellows:  Min Yu, George Bokas, Jason Maldonis, Ye Shen


Knezevic90x90templateCoupling Electrons, Phonons, and Photons for Nonequilibrium Transport Simulation

PI: Irena Knezevic (UW-Madison)


Manos90x90templateDMREF: Collaborative Research Chemoresponsive Liquid Crystals Based on Metal Ion-Ligand Coordination

PIs: Manos Mavrikakis and Nicholas Abbott (UW-Madison)


90x90eomtemplateDMREF: Multifunctional Interfacial Materials by Design

PIs: Chang-Beom Eom, Mark S. Rzchowski (UW-Wisconsin), Craig J. Fennie (Cornell U.), Evgeny Y. Tsymbal (U. Nebraska), Long-Qing Chen (Penn State U.), Xiaoqing Pan (U. Michigan)


Ediger90x90templateEngineering Organic Glasses

PIs: Lian Yu and Mark D. Ediger (UW-Madison), Juan J. de Pablo (U. Chicago)


Morgan90x90templateSI2-SSI Collaborative Research: A Computational Materials Data and Design Environment

PIs: Dane Morgan1Raphael Finkel2, Gerbrand Ceder3, Kristin Persson4
(UW-Madison1, University of Kentucky2, Massachusetts Institute of Technology (MIT)3, Lawrence Berkeley National Laboratory (LBNL)4


Imaging Point Defects with Quantitative STEM

PIs: Paul M. Voyles and Dane Morgan (UW-Madison)



Enabling high-throughput computational screenings of nano-porous materials via transferable, physically-motivated force fields and novel simulation methodologies

PI: J.R. Schmidt (UW-Madison)


photo at top: A computer simulation of  a physical vapor deposition (PVD) process. This process assists researchers in developing high-density, high-stability glass by controlling molecular orientation. The goal is to develop molecular glass that overcomes the shortcomings of traditional glass. Resulting new glass have applications in drug delivery, bio-preservation and organic electronics. Research information is here. 

Leave a Reply

Your email address will not be published.